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Numerical Solution of the Boundary-Layer Equations for a
General Aviation Fuselage
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Numerical solutions of the three-dimensional, compressible laminar boundary-layer equations for a general
aviation fuselage are presented. The numerical procedure is second-order accurate and independent of the
crossflow velocity direction. Results are presented for a Mach number and unit Reynolds number of 0.3 and 7
x 106 m"1, respectively, for angles of attack of 0 and 3 deg. Comparisons are made between results obtained
using a nonorthogonal body-oriented coordinate system and a streamline coordinate system. Axisymmetric
analog results are also compared with the three-dimensional solutions.

Nomenclature
Cfx, Cfy = skin friction coefficient in the x and y

directions, respectively, Eq. (11)
hi,h2 = metric coefficients in the x and y coordinates,

respectively
MO, = freestream Mach number
Pr = Prandtl number
p = pressure
T = temperature
u, v, w = velocity components in the x, y, and z

directions, respectively
V = total velocity, Eq. (7)
X = axial distance (m) measured from the nose, see

Fig. la
xty,z = body-oriented coordinates (Fig. la) or

streamline coordinates (Fig. Ib)
a. = angle of attack
Ax, Ay, Af = grid spacing in the x, y, and f directions,

respectively
<5 = boundary-layer thickness, (z)v/ve=0.995
d* = displacement thickness, defined in Eq. (13)
f = transformed normal coordinate
6 = angle between x and y coordinates
/>t = molecular viscosity
p = density
4> = azimuthal angle, 0 and -K on the windward and

leeward plane of symmetry, respectively; see
Fig. la

Subscripts
b = body-oriented coordinates
e = edge of the boundary layer
s = streamline coordinates
w = wall
y = partial differentiation with respect to y
oo = freestream
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Introduction

T HREE-DIMENSIONAL boundary-layer flows have been
numerically studied for over three decades. During this

period, the capability to obtain numerical solutions has ad-
vanced from solving the similarity equations for relatively
simple geometric shapes to the full nonsimilar equations for
more complex aircraft configurations. The earliest numerical
work that can be referenced, to the authors' knowledge, is that
of Raetz1 and Der and Raetz.2 References 1 and 2 are impor-
tant early contributions in that they introduced the stability of
the mixed parabolic-hyperbolic system, i.e., the zone of influ-
ence dependence principle. Blottner3 presented a state-of-the-
art review of three-dimensional boundary-layer procedures
that, with the exception of recently developed numerical meth-
ods, remains current at the present date. More recent treat-
ment of the subject is presented in Refs. 4 and 5.

Over the past decade, the major emphasis in computational
fluid mechanics has focused on solving the Euler and Navier-
Stokes equations for increasingly more complex aerodynamic
shapes. In many instances, the Navier-Stokes approach is the
only viable procedure, e.g., flows with strong interaction and
separation. However, Navier-Stokes solutions are generally
much more expensive in terms of computer resources than
boundary-layer procedures, and, while capable of simulating
the physics of complex flows, are often of low resolution due
to grid point restrictions and are not essential for many design
and analysis procedures. The present paper addresses a finite
difference procedure, independent of crossflow velocity direc-
tion, that can be efficiently applied to fuselage configurations,
i.e., bodies with a symmetry plane. It should be noted that the
procedure is applicable to any general configuration and has
been applied to wing flows (see Ref. 6).

Results obtained from numerically solving the three-dimen-
sional, compressible boundary-layer equations for a general
aviation fuselage are presented in the present paper. Compari-
sons are made between numerical results obtained on a
nonorthogonal body coordinate system, a streamline coordi-
nate system, and the axisymmetric analog7 applied to the
streamline coordinate system.

Coordinate System
A nonorthogonal curvilinear system defined on the body

surface is the most general boundary-layer coordinate system.
The software used to generate the results presented in the
present paper allows use of either the most general nonorthog-
onal system or any subset of the general system (see Ref. 5). In
the present paper, two coordinate systems are studied: 1) a
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nonorthogonal body-oriented coordinate system with cross-
flow planes perpendicular to the fuselage axis; and 2) an
orthogonal streamline coordinate system. Schematics of the
two coordinate systems are presented in Fig. 1.

Each of the selected coordinate systems has its particular
advantages and disadvantages. The nonorthogonal body-ori-
ented system is optimum from the viewpoints of grid genera-
tion and grid-spacing control. Also, in certain aspects the
interface software is simpler to apply since most inviscid solu-
tions for bodies having a plane of symmetry use one coordi-
nate plane perpendicular to the body axis. However, the
boundary-layer equations are singular at the nose of the body
(X = 0) for the body-oriented coordinates and either special
transformations such as used in Ref. 8 or other procedures
must be used to isolate this singular point. The streamline
coordinate system is orthogonal with zero values of crossflow
velocity at the wall and edge boundaries. The system's origin
is located at the stagnation point and is free of geometric
singularity at the nose. The system is not independent of angle
of attack and the downstream grid line distribution and grid-
point spacing is difficult, if not impossible, to control without
adaptive grid procedures such as that used in Ref. 9. In the
present study, no attempt was made to remove the nose singu-
larity (at X = 0). The singularity is isolated by locating the
initial data plane slightly downstream from the nose point (see
Fig. 2); consequently, the starting procedure limits the ap-
proach to small angle of attack for the blunted nose fuselage
(general and commercial aircraft fuselages). For large angle of
attack, transformations similar to that used in Ref. 8 can be
incorporated into the initial solution procedure when using the
body coordinate system.

Governing Equations
The three-dimensional, compressible boundary-layer equa-

tions for nonorthogonal curvilinear coordinates in dimen-
sional form are as follows5'10:

Continuity equation:

— (puh2 sin0) + — (pvh{ sin0) + — sin0) = 0 (1)

x -momentum equation:

pu du pv du du1-T-+7--T-+PW—
hi dx h2 dy dz

csc20 d- ——

> -momentum equation:

pu dv pv dv dv - n ,^-— + ^ — + p w — - pv2K2 cote + p«2K1csc0hi dx h2 dy dz

. , _ _
x cotO + pv2K2 csc0

dp d ( d ,_
+-,- (2)

dp_ dp d
+ _ - ( 3 )

Energy equation:
pudH pvdH
h{ dx + h2 dy

dH

dH
dz

ty=Const line

Nose Point

r
X=Const line

Fig. la Body-oriented coordinate system.

Stagnation Point

Fig. Ib Streamline coordinate system.
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j=jmax j=Jmax.i

Nose Point

Stagnation
point

X,x'

a) Front View b) Side View

Fig. 2 Initial data plane.

Here, h\ and h2 are metric coefficients and are functions of x
and y. The parameters K\ and K2 are geodesic curvatures of
the curves y = const and x = const, respectively, where

h\h2 sin0

1
sin20

*» = -rr^ \h{h2 sm20 I -cos20)^-2

V = (u2 + v2 + 2wv cos0)1/2

The boundary conditions are

(5a)

(5b)

(6a)

(6b)

(7)

z = <5, w = ue(x,y), v = ve(x,y), H = He (8a)

= 0, « = v = 0,

(8b)

At the edge of the boundary layer, the pressure gradients are
related to the inviscid velocities by the following equations:

Up due ve due
77 -^n2 oy-Tn\ ox CSC0

CSC0dp COtB CSC0
(9a)

tote

cot0 csc0 dp
hi dx

csc20 dp
h2 dy (9b)

The perfect gas equation of state and Sutherland's viscosity
are used to close the equation set. The value of the Prandtl
number used in the computation is 0.72. The stagnation point
and plane of symmetry equations are subsets of the governing
equations and are presented in Ref. 11. The governing equa-
tions for the streamline coordinates can be obtained by equat-
ing 0 = 7T/2 from the equations above.

The transformation, transformed governing equations, and
boundary conditions are presented in detail in Ref. 11. As

previously noted, the two coordinate systems studied are sub-
sets of the general nonorthogonal curvilinear coordinate sys-
tem; consequently, the transformation is valid for both coor-
dinate systems (body-oriented and streamline).

Numerical Method
The governing equations are solved in the transformed

plane (x,y, f). The transformed stagnation point equations are
linearized using the Newton-Raphson technique presented in
Ref. 4 and discretized by a central finite difference scheme.
The resulting momentum equations form a block tridiagonal
system, and the energy equation becomes a tridiagonal system.
The momentum equations and the energy equations are solved
iteratively in a decoupled fashion. The former are solved using
the Davis modified tridiagonal algorithm presented in Ref. 4.
A converged solution can usually be obtained within five
iterations.

The stagnation point solution is next transferred to the
initial data plane: / = 1; j - 1,2 . . . , y'max (see Fig. 2). The
transfer procedure assumes that the velocity gradients at the
stagnation point remain constant between the stagnation point
and the initial data plane; consequently, the initial data plane
must be located near the stagnation point. This restriction
limits the present procedure to small angles of attack when
using the body-oriented coordinate system. The transfer pro-
cedure is discussed in detail in Ref. 11.

Matsuno's finite difference method12 is used to march away
from the initial data plane. This finite difference method is an
extension of the predictor-corrector form of the Crank-Nicol-
son scheme originally suggested by Douglas and Jones.13 The
scheme is noniterative, explicit in y, half implicit in f, 0(Af2)
for constant Af, highly vectorizable, and independent of the
sign (direction) of the crossflow velocity component. The
unique characteristic of this method is that the crosswise (y)
derivatives are formed independent of the sign of the cross-
flow velocity component. The crosswise derivatives are ap-
proximated by three-point central differencing at the previous
step. This difference form yields stability independent of the
crossflow direction.

Both the finite difference equations (predictor and corrector
steps) for the momentum equations are cast in a 2 x 2 block
tridiagonal form and solved by the Davis modified tridiagonal
algorithm (see Ref. 4). Each (predictor and corrector) finite
difference energy equation can be arranged into a linear tridi-
agonal matrix equation form and solved by the Thomas al-
gorithm. Although there is coupling between the momentum
and energy equations, they can be solved in an uncoupled
manner due to the quasilinearization involved in the predictor
and corrector scheme.

The zone of dependence principle requires

— > 0 andue h2(Ay)u < 1.0 (10)

Matsuno's finite difference scheme is conditionally stable
with the same constraint as that required by the zone of depen-
dence principle. The accuracy of this scheme is investigated in
Ref. 11.

Geometry, Inviscid Solution, and Boundary-Layer
Edge Condition

The semianalytic geometry program developed by Barger
and Adams14 was used for the fuselage geometry. The Hess15

potential flow code was used to obtain the inviscid flow. The
inviscid solution from the Hess code is sensitive to geometry
input and exhibits oscillating behavior if the geometry is not
smooth. The semianalytic geometry program used in the
present investigation gives an accurate and smooth modeling
for fuselage shapes.

Typical inviscid grids are shown in Fig. 3. For the present
study, inviscid solutions were obtained using 54 grids in the X
direction and 37 grids in the <t> direction. The output from the
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1.88m 0.62m

Fig. 3 Typical in viscid grids on the Cessna fuselage.

Hess code is on the centroids of the panels; consequently, the
inviscid solution along the lines of symmetry must be obtained
by extrapolation. A major problem encountered with the in-
viscid solution is that the method is not accurate in the nose
region due to the singularity as r^O. Therefore, the
boundary-layer calculations must be started slightly down-
stream from the nose point when the inviscid flowfield is
obtained using panel methods.

Body-Oriented Coordinates
Using the geometry program and the inviscid solution from

the Hess code, the inviscid velocity components (ue,ve) and the
angle 0 are calculated on the panel centroids. The inviscid
solutions on the lines of symmetry are* extrapolated from the
interior region using the symmetry condition (in case of ue). A
bidirectional cubic spline with tension interpolation program
is used to obtain the inviscid velocity components and the
angle 6 on the boundary-layer grids. Using this interpolation
program, no discontinuity of the stream wise derivatives or
spanwise derivatives of the inviscid velocity components was
found. The metric coefficients are then obtained numerically
by central differences.

Streamline Coordinates
Using the geometry program and the inviscid velocities from

the Hess code, inviscid velocity components in the spherical
polar coordinate system are calculated. Next, the streamline
coordinates are calculated using the method developed by
Hamilton et al.16 The metric coefficient h2 is calculated numer-
ically by central differences. Using the same extrapolation and
interpolation procedures as used for the body-oriented coordi-
nates, the inviscid velocity (ue) is obtained on the streamline
grids. The streamlines originate slightly downstream from the
stagnation point. It is to be noted that the origin for each
streamline must be on the same x\ i.e., the initial x direction
and y direction must be orthogonal to each other.

Results and Discussion
The fuselage forebody selected for the present investigation

is nonanalytic and contains nonsmooth areas typical of many
general aviation aircraft fuselage shapes. The case is particu-

larly interesting in that the crossflow is into the plane of
symmetry: ve < 0 as 4> — 0; ve>0 as 0 — IT. Consequently,
standard marching procedures, such as traditionally used on
cones, ellipsoid of revolution, etc., at angle of attack cannot
be easily used to advance the solution into the crossflow plane;
i.e., x = const, y =y^y^'. . . ^max-i-

Test Conditions
Numerical results are presented for a Mach number and unit

Reynolds number of 0.3 and 7 x 106 m"1, respectively, for 0-
and 3-deg angles of attack for an adiabatic wall. A schematic
of a typical panel distribution used to obtain the inviscid
solution is presented in Fig. 3. Boundary-layer grids for the
body-oriented coordinate system using 31 grids in the.y direc-
tion and the streamline coordinate system using 91 streamlines
are shown in Figs. 4 and 5, respectively. The 91 grid-point
distribution (in the y direction) for the streamline coordinate
system presented in Fig. 5 is used for the results presented in
the present paper for the good resolution on the side of the
fuselage.

The skin friction coefficients are defined as

(11)

The skin friction coefficients presented in the present paper
are referenced to the body-oriented coordinate system. Results
obtained in the streamline coordinate system have been trans-
formed to the body-oriented coordinate system as follows:

(Cfx)b ~ (Pfx [cos(0 + 7) -sin(0 + 7) cot0]

7)csc0
(12)

where f} = ta.n~l(Cfy/CfX)s and 7 is an angle between the
streamline coordinate line (y = const) and the body-oriented
coordinate line (y = const). Displacement thickness, as pre-
sented in the present paper, was obtained from the following
definition:

5* = 1- pV
PeVe

dz (13)
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Fig. 4 Body-oriented boundary-layer grids.

Fig. 5 Streamline boundary-layer grids: a) a = 0 deg, b) a = 3 deg.

Boundary-Layer Grid
A uniform Af distribution having a value of 0.2 was used in

the present study. The software automatically adds additional
grid points in the direction normal to the wall, if required, as
solution proceeds downstream. For the present calculations, fe
varied from 3.0 near the stagnation point to 6.0 at X = 1.5.
The stepsize in x varied from 0.001 near the stagnation point
to 0.03 downstream, requiring about 110 steps. The grid distri-
bution in y was dependent on the coordinate system. Numeri-

cal experimentation was required to determine the grid distri-
bution that assured that the solution was grid independent. It
was found that 31 uniformly distributed points in the y direc-
tion produce grid independent results for the nonorthogonal
body coordinate system. Similar studies of the streamline co-
ordinate system showed that 91 uniformly distributed points
near the stagnation point were required to produce grid inde-
pendent results. The factor of three increase in the number of
points in the y direction for the streamline coordinate system
as compared with the body-oriented system is due to the lack
of control of the grid spacing downstream. This problem can
be solved using adaptive grid control procedures, but the
adaptive approach acids complexity to the software without
providing any advantage as compared with the nonorthogonal
body-oriented system.

The net CPU time for solving the governing equation for a
grid of 110 x 31 x 31 points on the CRAY-2 was 8 s. The time
and cost associated with solving the three-dimensional
boundary-layer equations is small as compared with that re-
quired modeling the geometry and obtaining the inviscid flow-
field.

The softwares used in the present study were developed by
the authors in support of transition prediction software. The
general curvilinear coordinate system was selected in order to
provide users of the software with the widest possible choice
of coordinate systems. In the present study, the nonorthogo-
nal body coordinate system was selected because of the follow-
ing factors: 1) angle of attack independence, 2) ease of using
geometry data specified for fuselage shapes, and 3) ease of
using most inviscid software. The streamline coordinate sys-
tem is angle-of-attack dependent and was chosen for study
since several of the transition prediction procedures required
output from the viscous solution along the streamline trajecto-
ries. For typical wing flows, the direction of the group velocity
for spatial stability analysis can be approximated as that of the
streamlines (see Ref. 17). Consequently, interpolation errors
could be minimized in obtaining the viscous data, required for
stability analysis, from the data base generated by the
boundary-layer solution. However, this approximation cannot
be made for fuselage shapes. Therefore, interpolation of the
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viscous flowfield data base in both x and y is required for both
coordinate systems. Experience gained in the present study
indicates that there is no advantage in using the streamline
coordinate system for general aircraft fuselage shapes.

A comment that must be made concerns the axisymmetric
analog results presented in Ref. 18. The axisymmetric analog
results and comments based on these results in Ref. 18 are not
correct. The axisymmetric analog results presented in Ref. 18
were inadvertently obtained from the 31 streamline data base
instead of the grid-independent 91 streamline results. The
axisymmetric results presented in the present paper were gen-
erated from the data base using 91 streamlines. The metric
coefficient h2 is obtained using central differences and cannot
be accurately calculated for 31 streamlines on the side of
fuselage.

Zero-Deg Angle of Attack
A side view of the fuselage forebody is presented in Fig. 6

showing the maximum pressure line and the crossflow velocity
(based on the body-oriented coordinate system) regions. The
lines of symmetry, 0 = 0 and TT, are inflow lines; consequently,
standard marching procedures cannot be easily used to ad-
vance the solution from the lines of symmetry into the interior
region (x = const; y = y2, y^ . . . ,^/max- i)- However, as pre-
viously discussed, the present method is independent of the
sign of the crossflow velocity.

Numerical results are presented in Figs. 7-9 for a = 0 deg.
The agreement between the skin friction coefficients obtained

in the two coordinate systems is excellent over the entire
surface. The axisymmetric analog results agree with the three-
dimensional results (body-oriented coordinate and streamline
coordinate systems) to within 10% and have the correct trend
on the side of the fuselage.

Boundary-layer thickness (Fig. 8) and displacement thick-
ness (Fig. 9) results exhibit similar trends in agreement be-
tween the results obtained in the two coordinate systems and
the axisymmetric analog.

0.0 0.2 0.4 ski*. °-6

Fig. 8 Boundary-layer thickness (Moo = 0.3, a = 0 deg).

0.75

0.50

0.25

0.00

-0.25

-0.50
0.0 0.5 1.0 1.5 2.0

Fig. 6 Sign of inviscid crossflow velocity component (Moo = 0.3,
a = 0 deg).

0.0 0.2 0.4- , , 0.6 0.8 1.0
0/7T

Fig. 9 Displacement thickness (Moo = 0.3, a = 0 deg).

0.0 0.2

Fig. 7 Skin friction coefficient (Moo = 0.3, a = 0 deg).

0.* , , 0.6
0/7T

0.75-r- ——— J V . = 0

-0.25

-0.50

X(m)
2.0

Fig. 10 Sign of inviscid crossflow velocity component (Moo = 0.3,
a = 3 deg).
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Fig. 11 Inviscid crossflow velocity component (ve) as a function of <f>
(Moo = 0.3, a = 3 deg).
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Fig. 12 Streamwise velocity profile at X = 1.5 (Moo = 0.3, a = 3
deg).
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Fig. 14 Temperature profile at X = 1.5 (Moo = 0.3, a = 3 deg).

Fig. 15 Skin friction coefficients (Moo = 0.3, a = 3 deg).

Fig. 13 Crossflow velocity profile at X = 1.5 (Moo = 0.3, a = 3 deg). Fig. 16 Boundary-layer thickness (Moo = 0.3, a = 3 deg).
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Fig. 17 Displacement thickness (Moo = 0.3, a = 3 deg).

Three-Deg Angle of Attack
At this angle of attack, the flowfield has two relative max-

ima pressure lines for 0 < <£ < TT with multiple changes in the
sign of the crossflow velocity (ve) based on the body-oriented
coordinates; see Fig. 10. Figure 11 shows the values of ve/V^
as a function of <j> at X = 0.6, 0.9, 1.2, and 1.5. The sign of ve
in the interval O < < £ < T T changes three times at X=\.5.
Streamwise velocity profiles (based on the body-oriented coor-
dinates) are presented and compared with axisymmetric
analog results in Fig. 12 for X - 1.5. The agreement is seen to
be reasonably good off the plane of symmetry with the largest
disagreement occurring at the leeward plane where the flow
tends to separation. Crossflow and temperature profiles are
presented in Figs. 13 and 14, respectively.

Skin friction coefficients, boundary-layer thickness, and the
displacement thickness results are presented in Figs. 15-17.
The agreement between the numerical results in the body-ori-
ented and the streamline coordinate systems is also excellent
over the entire surface. The axisymmetric analog results are
compared with the three-dimensional results in Figs. 15-17.
The agreement between the axisymmetric analog results and
the three-dimensional boundary-layer results is nearly of the
same order as for 0-deg angle of attack.

Concluding Remarks
The three-dimensional, compressible, laminar boundary-

layer equations were numerically solved for the forebody of a
general aviation aircraft fuselage. Solutions were obtained for
a Mach number and unit Reynolds number of 0.3 and 7 x 106

m ~ !, respectively, for angles of attack of 0 and 3 deg. Numer-
ical solutions were obtained using two coordinate systems: 1)
nonorthogonal body-oriented and 2) streamline. Axisymmet-
ric analog results were also obtained from the streamline sys-
tem.

The crossflow velocity direction for the fuselage was into
the plane of symmetry for both the most windward and lee-
ward planes for both angles of attack considered. Conse-
quently, standard solution procedures that march around the
body using the plane of symmetry as ah initial data plane
could not be easily used to solve the present test case. How-
ever, no numerical problems were encountered using the finite
difference procedure used in the present analysis. It should
also be noted that at 3-deg angle of attack the crossflow
velocity component reversed direction as often as three times
in the region bounded by the windward and leeward symmetry
planes.

The agreement of the boundary-layer parameters obtained
in the two coordinate systems was excellent over the entire

surface; however, three times as many grid points were re-
quired for the streamline system to achieve grid independent
results. The streamwise skin friction coefficient results ob-
tained from the axisymmetric analog solution agreed closely in
trend and magnitude with the three-dimensional results. Simi-
lar agreement was obtained for the boundary-layer thickness,
displacement thickness, and streamwise velocity profiles, with
maximum disagreement occurring on the plane of symmetry.

The following comments can be made in relation to the two
coordinate systems: 1) the streamline system requires more
computational effort than the body-oriented system; 2) the
body-oriented system is independent of the angle of attack; 3)
it is difficult, if not impossible, to control the streamline
distribution downstream; and 4) there is no advantage in using
the streamline system in relation to transition prediction pro-
cedures for fuselage shapes.
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